PARALLEL GUESSING: A STRATEGY FOR
HIGH-SPEED COMPUTATION

Technical Note No. 338

September 19, 1984

By: Martin A. Fischler, Program Director, Perception
Oscar Firschein, Staff Scientist

Artificial Intelligence Center
Computer Science and Technology Division

Presented to the Workshop on Algorithm-Guided Parallel
Architectures for Automatic Target Recognition

[Sponsored by the DARPA Tactical Technology Office {TTO),
the Naval Research Laboratory, and the Army Night Vision
and Electro-Optics Laboratory (NVL)] July 16-18, 1984 in
Leesburg, VA,

SRI Project 5355
Contract MDA903-83-C-0027

SR Infrarnefionel

e S
7 71N N™

Intern nal
‘!‘g ®

atiol
7 7
P

333 Ravenswood Ave. * Menlo Park, CA 94025
14151 326-6200 ¢ TWX: 910-373-2046 » Telex: 334-486

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
19 SEP 1984 2. REPORT TYPE 00-09-1984 to 00-09-1984
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Parallel Guessing: A Strategy for High-Speed Computation £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

SRI International,333 Ravenswood Avenue,Menlo Park,CA,94025 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. THISPAGE 13
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

CONTENTS

I INTRODUCTION ..ottt ittt it e e e e s e st e e v
I APPROACH TO PARALLELISM
I EXAMPLE ALGORITHMS
A. Hough Trapsform Approach

I. RANSAC

2. Back Projection

3. Branch-and-Bound

4. Maximum or Minimum of a Funetion

v CONCLUSIONS e e e s s
REFERENCES . e

iil

ABSTRACT

Attempts have been made to speed up image-understanding computation
involving conventional serial algorithms by decomposing these algorithms into
portions that can be computed in parallel. Because many classes of algorithms do
not readily decompose, one seeks some other basis for parallelism (i.e., for using
additional hardware to obtain higher processing speed). In this paper we argue
that “‘porallel guessing” for image analysis is a2 useful approach, and that several
recent IU algorithms are based on this concept. Problems suitable for this
approach have the characteristic that either “distance’ from a true solution, or
the correctness of a guess, can be readily checked. We review image-analysis
algorithms having a parallel guessing or randomness flavor.

We envision a paralle]l set of computers, each of which carries out a
computation on a data set using some random or guessing process, and
communicates the ‘“‘goodness” of its result to its co-workers through a
“blackboard™ mechanism.

I INTRODUCTION

Sophisticated image analysis often requires the use of a sequence of time-
consuming algorithms, such as feature extraction, region growing, and model
instantiation. Such processing sequences currently require several minutes for their
computations on commonly available machines, see Table 1. “Real-time’ scene
analysis with frame rates of 1/30 second will require three or four orders of
magnitude speedup. If future computer technology advances provide us with one
or two orders of magnitude over the next 5 to 10 years, two or three orders of
magnitude improvement are still required for practical applications in the
indicated 3-10 year period.

Table 1
Timing for Some Image Understanding Algorithms

(all timing is CPU time of a VAX 11/780)

RELAX relaxation algorithm, University 3 minutes/iteration
of Maryland, (3x3 window, 128x128 image)

Phoenix segmentation algorithm, Carnegie 33 minutes
Mellon university, 500x500 image

GHOUGH, generalized Hough Transform, 1-5 minutes
University of Rochester (variable,

depending on image size, number of

rotations and radii tried, and template size)

In recent years, parallel architectures for image processing have been
developed; a recent survey of these is given in [Reeves 1984] and in [Duff 1983].
These architectures are largely tailored for the natural parallelism found in
convolution, filtering, and other "low-level” scene analysis processes. However,
higher-level processes do not exhibit such parallelism and, in general, algorithmic
parallelism cannot be achieved by attempting to decompose essentially sequential
algorithms. (Shannon showed this for the case of n-dimensional switching
functions, [Shannon 1949 |).

We therefore seek a generally applicable formalism for image analysis
algorithms that offers a natural parallelism, so that we can trade additional
hardware for decreased computation time. One class of such algorithms takes
advantage of the following observation: It ¢s often much faster lo verify the

correctness of a guess, than to compute the solution. Based on this observation,
we postulate an architecture based on a large set of processors that guess an
answer (1) by means of random selection, {2) by an exhaustive ‘“‘rough grain”
selection, or (3) by intelligent guessing. Such guessing mechanisms become
especially important in problems in which the data are noisy, or when there is not
an adequate analytical model.

I APPROACH TO PARALLELISM

Our approach is, therefore, to develop image analysis algorithms suitable for
parallel computation that are based on guessing a good answer. The basic idea is
that each module simultaneously takes a different guess and computes a
“goodness” value for the guess. When a “‘good’ guess is made, its result and the
goodness value are entered on a ‘“blackboard.” The blackboard controller
indicates the basis for further iterations by constraining the range of new values
to be chosen and determines when a suitable answer has been found,

In contrast to most current concepts, based on a small ‘‘grain size” and
high-bandwidth communication between processing modules, we seek algorithms
that do not require lockstep operation of processors and require a minimum of
communication between processors. The proposed parallel architecture is shown
in Figure 1. Symbolic structures derived from low-level processing are stored in a
blackboard. Parallel processors derive their input data from this blackboard
directed by a control processor. Intermediate results are returned by the
processors to the blackboard. Results of the computation are analyzed by the
control processor and then used as output. The requirements for algorithms to be
used in this architecture are as follows:

o Selection. A selection method for the guess must be provided,
using intelligent guessing, a random selection, or exhaustive
selection from a roughly quantized space. The selection process
can be carried out in data space by selecting from among the
input data, in parameter space in which there is a selection of
values for one or more of the model parameters, or in both data
and parameter space.

e Goodness of result. There must be a simple measure of the
goodness of the result obtained using the guess.

e Control. Some method must be provided for selecting the best
current guesses, for using the best current guess to constrain
additional guessing, for accomplishing efficient guessing by
partitioning the space of guesses, and for determining when the
overall process is to stop.

m EXAMPLE ALGORITHMS

Many existing scene-analysis-related algorithms can be viewed as satisfying
the above requirements. ‘The Hough transform, RANSAC, back-projection
techniques, branch-and-bound, and functional optimization are particular
examples. These are described below.

A Hough Transform Approach

The Hough transform [Duda and Hart, 1972] can be used when little is
known about the scale and location of the boundary of an object we wish to find,
but its shape can be described by a parametric curve, e.g., a straight line. This
class of algorithms finds the parameters of a model within a roughly quantized
range of variable values in the equations of the model. For example, if we are
given a list of edge pixels and wish to find an acceptable straight line that passes
through or near many of these pixels, we can use the approach shown in Figure 2.

This approach is mechanized using random data selection. Each processor
selects an edge point from the list and considers a span of lines of various
directions through the point. The distance of the normal to each such line is
computed, and the value of the normal distance and angle for each line is used to
increment an appropriate (angle, normal distance} histogram ‘“bucket” on the
blackboard. A control processor associated with the blackboard stops the process
when it determines that a histogram peak is evident and returns the fangle,
normal distance} value of the peak as the parameters of the desired line.

1. RANSAC

The random selection and consensus (RANSAC) approach [Fischler and
Bolles, 1981] is a procedure that uses a random selection of exactly enough data
points to satisfy a model. Each trial involves random point selection and testing of
the proposed model on the remaining points. A simple example of RANSAC is the
case of determining an acceptable line, given a set of candidate edge points. A
pair of points is randomly selected, as shown in Figure 3, and the sum of the
absolute values of the deviations of the other points from this line is used as a
measure of goodness of fit.

The algorithm uses random selection of data points. In the parallel
mechanization, each processor selects a pair of input points, computes the line
parameters, and then determines the sum of the deviations of the other points
from this line. Each processor looks at the blackboard to see if the sum of the
deviations obtained is less than the best value posted on the blackboard. If it is,
then the previous value is replaced by the new value and the line parameters.
When the sum of the deviations is less than a desired amount {(and the individual
deviations are not correlated in any way}, the control processor stops the process
by writing a termination message on the blackboard.

2. Back Projection

In the “back-projection” problem, we are given an image and want to
determine the structure of the scene that produced the image. Witken [Witken
1981] finds the 3-D orientation of small planar patches within the scene to obtain
an estimate of the 3-D geometry of objects in the scene. His approach makes the
following assumption: An arbifrary scene will have no favored direction for ils
vistble edges. The algorithm first finds the edges in the image and then finds the
tangent lines to these edges. A trial and error procedure of assuming specific
planar patch orientations in the scene is now carried out. The “best” planar
patch for each local region in the scene is the one for which the distribution of the
“back-projected” line orientations will be *‘most random.”

In the parallel mechanization shown in Figure 4, each processor ohtains,
from the blackboard, a list of tangent lines in some local patch of the image.
Each processor accepts a complete set of sceme planar patch orientation
parameters specified on the blackboard and uses these parameters to back-project
the tangent lines. Each processor develops a histogram of line directions, for each
trial orientation of the scene patch, as an indicator of the randomness for the line
directions: the flatter the histogram, the better the estimate. Each processor
reports to the blackboard the best orientation of the patch it is analyzing and the
goodness of the result. The blackboard control computer specifies the range of
plane orientations to use, assigns portions of the image to the computers for
analysis, and decides when to stop the process.

3. Branch-and-Bound

Branch-and-bound is a popular technique that has been used successfully in
the solution of problems that arise in combinatorial optimization and artificial
intelligence. In a branch-and-bound approach, the solution space is organized as a
graph that is usually a tree, with each link representing a value. The goal is to
proceed from the root node to some end node in a way that maximizes or
minimizes the sum of the path values. Various forms of branch-and-bound are all
based on the idea of avoiding paths that are unproductive. Thus, one might begin
by following a random path from the root to the goal to obtain a total cost C for
that path. One then explores another path, stopping the exploration of that path
when the path cost exceeds C. If a lower-total-cost path from root to goal is
found, then its cost becomes the new C. Parallelism can be introduced into the
process by expanding more than one path during each iteration. A parallel
computer for implementing branch-and-bound algorithms is given in [Wah and
Ma 1982], and the problems that arise in parallel branch-and-bound are given in
[Lai and Sahni 1984].

Using the multiple-path-expansion approach, each processor follows a path,
computing the cumulative cost as it proceeds. When a processor has followed a
path from root to goal, it posts the total cost on the blackboard. Any processor
that currently has a greater cost terminates its current path and pursues a new
path. This procedure is shown in Figure 5.

4, Mazimum or Minimum of a Function

There are many image-analysis applications involving the determination of
the maximum or minimum of a function. If the function is relatively smooth, then
an iterative gradient approach can be used in which a measure of the gradient is
used to determine the next guess as to the independent variable. If the function
has many local maxima or discontinuities, a coarse-fine approach is more
appropriate, in which random exploration is carried out in coarse partitions of the
independent variable, and a finer exploration is then made in locations that seem
promising.

In the coarse-fine parallel mechanization, each processor is assigned a range
and makes random guesses of the independent variable within its assigned range.
After n random looks, only the most promising ranges are retained, and the
processors are redistributed to cover the selected ranges. The random guessing
procedure is continued for a number of iterations in the selected ranges, and sub-
ranges are identified for further exploration. The motivation is to avoid getting
trapped in a local maximum at an early stage of the process. In the parallel
mechanization shown in Figure 6, we use a simple one-dimensional example of
finding a global maximum, given a “noisy” function having many local maxima.

5

IV . CONCLUSIONS

Guessing techniques based on randomness or exhaustive bucketing can be
important in image analysis, since such guessing is often needed in the face of
data errors or lack of a suitable analytic model. In addition, guessing offers the
advantage of a uniform approach to achieving parallelism. We have indicated a
paralle! architecture that can take advantage of such an approach and some
present-day algorithms that can be viewed from this point of view. Rethinking of
some of the ‘“classical” image-analysis algorithms in this context can prove
fruitful.

REFERENCES

Duda, R.O. and P.E. Hart, “Use of the Hough transformation to detect lines
and curves in pictures,” Comm ACM, 15,1, Jan. 1972, 11-15.

Fischler, M.A. and R.C. Bolles, “Random Sample Consensus: A Paradigm
for Model Fitting with Applications to Image Analysis and Automated
Cartography,” Comm. ACM Vol. 24(6), pp. 381-395 (June 1981).

Frisby, J.P., "“Seeing: Illusion, Brain, and Mind,"” Oxford University Press,
1980.

Lai, T.and S.Sahni, ‘“Anomalies in Parallel Branch-and-Bound
Algorithms,” Comm. of the ACM, June 1984, Vol. 27, No. 6.

Reeves, A. P., “Parallel Computer Architectures for Image Processing,”
Computer Vision, Graphics, and Image Processing 25, 638-88(1984).

Shannon, C.E., “Synthesis of two-terminal switching networks,”” Bell System
Technical Journal, Jan. 1949 28(1):59-98.

Wah, B.and Ma, Y., “NANIP - A parallel computer system for
implementing branch-and-bound algorithms.’”” Proc. 8th Ann. Symp. on Computer
Architecture, 1982, pp. 239-262.

Witkin, A. P., “Recovering surface shape and orientation from texture,”
Artificial Intelligence 17, 1981, 17-47.

BLACKBOARD PROCESSORS

'LOW-LEVEL' SYMBOLIC STRUCTURES /

IMAGE |—+
FROCESSING FROM IMAGES(trees, lists, ete.)

> OF PROPERTIES DERIVED

INTERMEDIATE
RESULTS

CONTROL
INFORMATION

'y

!

CONTROL
PROCESSOR

!

RESULTS

FIGURE 1 PARALLEL PROCESSING ARCHITECTURE FOR GUESSING ALGORITHMS

‘LOW-LEVEL'

BLACKBOARD PROCESSORS

LIST OF

IMAGE \—#»| o2 OCESSING

P
e
x

For point x, v,

given the angle of the normal,

find the normal distance from the origin
to the line through x, y.

'‘EDGE’ PIXELS

/

Ve

Each processor:
g ® Selects a point from the Blackboard
® Compures normal distances
for each angle
® Sends resuit to blackboard

CONTROL
INFORMATION

[}

A
CONTROL
PROCESSOR

s STOP PROCESS

¢ RETURN p, 8
OF LINE

FIGURE 2 HOUGH APPROACH

'LOW-LEVEL’

IMAGE = 10 nCESSING

salected pair of points

BLACKBOARD PROCESS0RS
o LiST OF POINTS """,
BEST RESULT .
SO FAR .
CONTROL
INFORMATION
I Each processor:
s Selects 2 paints at random
CONTROL ® Computes line parameters
PROCESSOR ® Finds the sum of absolute

& TERMINATE

!

LINE
PARAMETERS

deviations from this line
Looks on blackboard to see
if its rasult is better; enters
result if it is

FIGURE 3 RANSAC:RANDOM SELECTION AND CONSENSUS

BLACKBOARD

IMAGE >

‘LOW-LEVEL’
PROCESSING
FINDS EDGES AND

®

®

®

N

TANGENT LINES

Image Patch

tangent lines
N

s

/1

v

projected tangent

/ lines
% assumed a, § of patch
ZfF /" in ‘real warlg’

3
w

histogram for a
particular a, 8

“\-\/\/"/\\

angle of projected
tangent line

LIST OF TANGENT LINES
FOR EACH "PATCH"
OF IMAGE

I | | | L

BEST a, § !
FOR EACH PATCH

a, b

CONTROL
INFORMATION

d

CONTROL
PROCESSOR

s PATCH
ASSIGNMENT
¢ TERMINATION

!

QUTPUT

FIGURE 4 BACK-PROJECTION

PROCESSORS

Each processor:

Selects a “'patch”
Backprojects the tangent lines
aon various glane arientations
Selects the orientation giving
the "'most random’’ line
directions

15

BLACKBOARD

PROCESSORS

‘LOW-LEVEL’
PROCESSING

IMAGE o

TREE

processor drops this path
since length exceeds 15

GnaT\

path explored compistely
with total length 15

s PATH AND
COST OF PATH

CONTROL
INFORMATION

I

CONTROL
PROCESSOR

¢ TERMINATION
e RESULTS

'

RESULTS

FIGURE 5 BRANCH AND BOUND

IMAGE -

'LOW-LEVEL'

BLACKBOARD

ANALYSIS

Basic Concept

Divide x into ranges
Randomly choose x values
in each ranga

Retain the x4, in range
that gives largest y

Form finer range around x g,
and repeat process

x, ¥ LIST

LARGEST x, v

CONTROL
INFORMATION

[

i

CONTROL
PROCESSOR
RANGE ASSIGNER

ASSIGNMENT OF
PROCESSORS TO
RANGE

TERMINATION
RESULTS

!

RESULTS

Each processor:

® Randomily chooses a path
through the tree

e Drops path when it becomes
more expensive than least-
cost path, and then backs up

s Heports to blackboard when
it reaches goal fevel with a
lower cost path

PROCESSORS

Each processor:

Randomiy selects x in its
assigned range

Sees whether associated y
exceeds current max y value
After n iterations, contral
processor eliminates same

initial partitions as unproductive
Assigns processors 1o other
partitions

FIGURE 6 COARSE-FINE, MAX-MIN GF A FUNCTICON

10

